The Role of Inertia in Modeling Decisions from Experience with Instance-Based Learning

نویسندگان

  • Varun Dutt
  • Cleotilde Gonzalez
چکیده

One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document

  Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...

متن کامل

Improving Teaching-Learning Process and Experience Based on Students, Faculty and Staff Perspectives

In order to make strategic decisions, the new leadership team at the College of Agriculture at the California State Polytechnic University, Pomona conducted a series of focus group interviews with its students, faculty, and staff members. The purpose of this qualitative study was to poll the opinions of these important stakeholders to improve the teaching-learning process in the college, to pro...

متن کامل

Stimulation of Organizational Inertia: Identification of the Dimensions and Components of Organizational Inertia at Mazandaran University of Medical Sciences, Iran

Background & Objective: Considering the current unstable environment, organizations are faced with numerous changes and should adapt to various environmental factors. The present study aimed to evaluate the dimensions and components of organizational inertia at Mazandaran University of Medical Sciences (MUMS), Iran. Materials and Methods: This applied study was conducted based on an explorator...

متن کامل

Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks

Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...

متن کامل

IRDDS: Instance reduction based on Distance-based decision surface

In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012